Media・Award

Media・Award受賞/記事紹介

バイオチューブに関する論文一覧

Title Author Journal
Six-Month Patency of Long Carotid Bypass Grafts Constructed with In-Body Tissue Architecture-Induced Small-Diameter Biotubes in a Goat Model

Mori K, Umeno T, Kawashima T, Shuto T, Iwai R , Teng L , Tajikawa T, Nakayama Y, Miyamoto S

2025, 12(3), 260;bioengineering https://doi.org/10.3390/bioengineering12030260

Bladder Reconstruction in Cats Using In-Body Tissue Architecture (iBTA)-Induced Biosheet. Bioengineering (Basel). Fujita N, Sugiyama F, Tsuboi M, Nakamura HK, Nishimura R, Nakayama Y, Fujita A.

2024 Jun 16;11(6):615. doi:10.3390/bioengineering11060615. PMID: 38927851; PMCID: PMC11200650.

Diverse Shape Design and Physical Property Evaluation of In-Body Tissue Architecture-Induced Tissues. Bioengineering (Basel). Tajikawa T, Sekido Y, Mori K, Kawashima T, Nakashima Y, Miyamoto S, Nakayama Y.

2024 Jun 12;11(6):598. doi: 10.3390/bioengineering11060598. PMID: 38927834; PMCID: PMC11200934.

Development of Subcutaneous SSEA3- or SSEA4-Positive Cell Capture Device. Bioengineering (Basel).

Nakayama Y, Iwai R.

2024 Jun 8;11(6):585. doi:10.3390/bioengineering11060585. PMID: 38927821; PMCID: PMC11200914.

Dramatic Wound Closing Effect of a Single Application of an iBTA-Induced Autologous Biosheet on Severe Diabetic Foot Ulcers Involving the Heel Area. Bioengineering (Basel).

Higashita R, Nakayama Y, Miyazaki M, Yokawa Y, Iwai R, Funayama-Iwai M.

2024 May 6;11(5):462. doi:10.3390/bioengineering11050462. PMID: 38790329; PMCID: PMC11117490.

First-in-human results of an in-body tissue architecture-induced tissue-engineered vascular graft “Biotube” for application in distal bypass for chronic limb-threatening ischemia. J Vasc Surg Cases Innov Tech.

Higashita R, Miyazaki M, Oi M, Ishikawa N.

2022 Jul 31;8(3):488-493. doi:10.1016/j.jvscit.2022.07.007. PMID: 36052213; PMCID: PMC9424347.

Evaluation of Skin Wound Healing with Biosheets Containing Somatic Stem Cells in a Dog Model: A Pilot Study. Bioengineering (Basel). Maeta N, Iwai R, Takemitsu H, Akashi N, Miyabe M, Funayama-Iwai M, Nakayama Y.

2024 Apr 28;11(5):435. doi: 10.3390/bioengineering11050435. PMID: 38790301; PMCID: PMC11118178.

Breaking the Limit of Cardiovascular Regenerative Medicine: Successful 6-Month Goat Implant in World’s First Ascending Aortic Replacement Using Biotube Blood Vessels. Bioengineering (Basel).

Mori K, Umeno T, Kawashima T, Wada T, Genda T, Arakura M, Oda Y, Mizoguchi T, Iwai R, Tajikawa T, Nakayama Y, Miyamoto S.

2024 Apr 20;11(4):405. doi: 10.3390/bioengineering11040405. PMID: 38671826; PMCID: PMC11048657.

 Regeneration Process of an Autologous Tissue-Engineered Trachea (aTET) in a Rat Patch Tracheoplasty Model. Bioengineering (Basel).

Iwasaki S, Deguchi K, Iwai R, Nakayama Y, Okuyama H.

2024 Feb 29;11(3):243. doi:10.3390/bioengineering11030243. PMID: 38534518; PMCID: PMC10968659.

Carotid Artery Bypass Surgery of In-Body Tissue Architecture-Induced Small-Diameter Biotube in a Goat Model: A Pilot Study. Bioengineering (Basel).

Umeno T, Mori K, Iwai R, Kawashima T, Shuto T, Nakashima Y, Tajikawa T, Nakayama Y, Miyamoto S.

2024 Feb 21;11(3):203. doi:10.3390/bioengineering11030203. PMID: 38534477; PMCID: PMC10967853.

Successful reconstruction of the rat ureter by a syngeneic collagen tube with a cardiomyocyte sheet. Regen Ther.

Yamamoto S, Matsui K, Kinoshita Y, Hiroshi Sasaki, Sekine H, Saito Y, Nakayama Y, Kume H, Kimura T, Yokoo T, Kobayashi E.

2023 Oct 13;24:561-567. doi: 10.1016/j.reth.2023.10.001. PMID: 37868722; PMCID: PMC10584669.

Bioprosthetic Valve Deterioration: Accumulation of Circulating Proteins and Macrophages in the Valve Interstitium. JACC Basic Transl Sci.

Sakaue T, Koyama T, Nakamura Y, Okamoto K, Kawashima T, Umeno T, Nakayama Y, Miyamoto S, Shikata F, Hamaguchi M, Aono J, Kurata M, Namiguchi K, Uchita S, Masumoto J, Yamaguchi O, Higashiyama S, Izutani H.

2023 May 10;8(7):862-880. doi:10.1016/j.jacbts.2023.01.003. PMID: 37547071; PMCID: PMC10401294.

Successful tracheal regeneration using biofabricated autologous analogues without artificial supports. Sci Rep.

Hiwatashi S, Iwai R, Nakayama Y, Moriwaki T, Okuyama H.

2022 Nov 24;12(1):20279. doi: 10.1038/s41598-022-24798-y. PMID: 36434016; PMCID: PMC9700768.

Pre-implantation evaluation of a small-diameter, long vascular graft (Biotube®) for below-knee bypass surgery in goats. J Biomed Mater Res B Appl Biomater.

Nakayama Y, Iwai R, Terazawa T, Tajikawa T, Umeno T, Kawashima T, Nakashima Y, Shiraishi Y, Yamada A, Higashita R, Miyazaki M, Oie T, Kadota S, Yabuuchi N, Abe F, Funayama-Iwai M, Yambe T, Miyamoto S.

2022 Nov;110(11):2387-2398. doi:10.1002/jbm.b.35084. Epub 2022 May 13. PMID: 35561095.

Application of Biosheets as Right Ventricular Outflow Tract Repair Materials in a Rat Model. Front Vet Sci.

Mizuno T, Iwai R, Moriwaki T, Nakayama Y.

2022 Apr 8;9:837319. doi: 10.3389/fvets.2022.837319. PMID: 35464349; PMCID: PMC9024079.

A Novel Method for Urinary Tract Reconstruction in Transplanted Embryonic Kidneys Using the Hybrid Stent: A Pig Study. Transplant Direct.

Matsui K, Iwai S, Sasaki H, Takamura T, Kinoshita Y, Saito Y, Fujimoto T, Nakayama Y, Suzuki Y, Matsunari H, Nagashima H, Kobayashi E, Yokoo T.

2022 Feb 10;8(3):e1293. doi:10.1097/TXD.0000000000001293. PMID: 35187217; PMCID: PMC8843367.

Acute Phase Pilot Evaluation of Small Diameter Long iBTA Induced Vascular Graft “Biotube” in a Goat Model. EJVES Vasc Forum.

Higashita R, Nakayama Y, Shiraishi Y, Iwai R, Inoue Y, Yamada A, Terazawa T, Tajikawa T, Miyazaki M, Ohara M, Umeno T, Okamoto K, Oie T, Yambe T, Miyamoto S.

2022 Jan 11;54:27-35. doi:10.1016/j.ejvsvf.2022.01.004. PMID: 35128505; PMCID: PMC8804190.

Involvement of somatic stem cells in encapsulation of foreign-body reaction in canine subcutaneous Biotube tissue formation. J Biosci Bioeng.

Sato Y, Iwai R, Fukushima M, Nakayama Y.

2021 Nov;132(5):524-530. doi:10.1016/j.jbiosc.2021.07.003. Epub 2021 Aug 19. PMID: 34420897.

Three-month outcomes of aortic valve reconstruction using collagenous membranes (biosheets) produced by in-body tissue architecture in a goat model: a preliminary study. BMC Cardiovasc Disord.

Okamoto K, Umeno T, Shuto T, Wada T, Anai H, Nishida H, Nakayama Y, Miyamoto S.

2021 Apr 15;21(1):184. doi:10.1186/s12872-021-01988-6. PMID: 33858334; PMCID: PMC8050917.

A new method of primary engineering of esophagus using orthotopic in-body tissue architecture. J Pediatr Surg.

Suzuki K, Komura M, Obana K, Komura H, Inaki R, Fujishiro J, Suzuki K, Nakayama Y.

2021 Jul;56(7):1186-1191. doi:10.1016/j.jpedsurg.2021.03.025. Epub 2021 Mar 26. PMID: 33845983.

Aortic valve neocuspidization with in-body tissue-engineered autologous membranes: preliminary results in a long-term goat model. Interact Cardiovasc Thorac Surg.

Kawashima T, Umeno T, Terazawa T, Wada T, Shuto T, Nishida H, Anai H, Nakayama Y, Miyamoto S.

2021 May 27;32(6):969-977. doi:10.1093/icvts/ivab015. PMID: 33543242; PMCID: PMC8691585.

Urinary bladder reconstruction using autologous collagenous connective tissue membrane “Biosheet®” induced by in-body tissue architecture: A pilot study. Regen Ther.

Iimori Y, Iwai R, Nagatani K, Inoue Y, Funayama-Iwai M, Okamoto M, Nakata M, Mie K, Nishida H, Nakayama Y, Akiyoshi H.

2020 Nov 20;15:274-280. doi:10.1016/j.reth.2020.10.006. PMID: 33426229; PMCID: PMC7770416.

Spatiotemporal histological changes observed in mouse subcutaneous tissues during the foreign body reaction to silicone. J Biomed Mater Res A.

Oe S, Masum MA, Ichii O, Nishimura T, Nakamura T, Namba T, Otani Y, Nakayama Y, Elewa YHA, Kon Y.

2021 Jul;109(7):1220-1231. doi: 10.1002/jbm.a.37115. Epub 2020 Oct 15. PMID: 33021053.

Mechanical characterization of an in-body tissue-engineered autologous collagenous sheet for application as an aortic valve reconstruction material. J Biomech.

Terazawa T, Kawashima T, Umeno T, Wada T, Ozaki S, Miyamoto S, Nakayama Y.

2020 Jan 23;99:109528. doi: 10.1016/j.jbiomech.2019.109528. Epub 2019 Nov 18. PMID: 31780124.

Application of in-body tissue architecture-induced Biotube vascular grafts for vascular access: Proof of concept in a beagle dog model. J Vasc Access.

Furukoshi M, Tatsumi E, Nakayama Y.

2020 May;21(3):314-321. doi:10.1177/1129729819874318. Epub 2019 Sep 18. PMID: 31530219.

Fabrication of an anatomy-mimicking BIO-AIR-TUBE with engineered cartilage. Regen Ther.

Komura M, Komura H, Satake R, Suzuki K, Yonekawa H, Ikebukuro K, Komuro H, Hoshi K, Takato T, Moriwaki T, Nakayama Y.

2019 Aug 8;11:176-181. doi:10.1016/j.reth.2019.07.004. PMID: 31453272; PMCID: PMC6700413.

Initial 3-year results of first human use of an in-body tissue-engineered autologous “Biotube” vascular graft for hemodialysis. J Vasc Access.

Nakayama Y, Kaneko Y, Okumura N, Terazawa T.

2020 Jan;21(1):110-115. doi:10.1177/1129729819852550. Epub 2019 Jun 6. PMID: 31169047.

Long-term outcomes of patch tracheoplasty using collagenous tissue membranes (biosheets) produced by in-body tissue architecture in a beagle model. Surg Today.

Umeda S, Nakayama Y, Terazawa T, Iwai R, Hiwatashi S, Nakahata K, Takama Y, Okuyama H.

2019 Nov;49(11):958-964. doi: 10.1007/s00595-019-01818-5. Epub 2019 May 16. PMID: 31098758.

Shape memory of in-body tissue-engineered Biotube® vascular grafts and the preliminary evaluation in animal implantation experiments. J Cardiovasc Surg (Torino).

Nakayama Y, Furukoshi M, Tatsumi E.

2020 Apr;61(2):208-213. doi: 10.23736/S0021-9509.19.10594-0. Epub 2019 Apr 30. PMID: 31058478.

One-year follow-up study of iBTA-induced allogenic biosheet for repair of abdominal wall defects in a beagle model: a pilot study. Hernia.

Terazawa T, Furukoshi M, Nakayama Y.

2019 Feb;23(1):149-155. doi:10.1007/s10029-018-1866-1. Epub 2018 Nov 30. PMID: 30506241.

Tracheal Replacement Using an In-Body Tissue-Engineered Collagenous Tube “BIOTUBE” with a Biodegradable Stent in a Beagle Model: A Preliminary Report on a New Technique. Eur J Pediatr Surg.

Hiwatashi S, Nakayama Y, Umeda S, Takama Y, Terazawa T, Okuyama H.

2019 Feb;29(1):90-96. doi: 10.1055/s-0038-1673709. Epub 2018 Nov 2. PMID: 30388721.

Development of long in vivo tissue-engineered “Biotube” vascular grafts. Biomaterials.

Nakayama Y, Furukoshi M, Terazawa T, Iwai R.

2018 Dec;185:232-239. doi: 10.1016/j.biomaterials.2018.09.032. Epub 2018 Sep 18. PMID: 30248647.

iBTA-induced bovine Biosheet for repair of abdominal wall defects in a beagle model: proof of concept. Hernia.

Nakayama Y, Oshima N, Tatsumi E, Ichii O, Nishimura T.

2018 Dec;22(6):1033-1039. doi: 10.1007/s10029-018-1799-8. Epub 2018 Jul 18. PMID: 30022282.

One year Rat Study of iBTA-induced “Microbiotube” Microvascular Grafts With an Ultra-Small Diameter of 0.6 mm. Eur J Vasc Endovasc Surg.

Ishii D, Enmi JI, Iwai R, Kurisu K, Tatsumi E, Nakayama Y.

2018 Jun;55(6):882-887. doi: 10.1016/j.ejvs.2018.03.011. Epub 2018 Apr 13. PMID: 29661648.

Wall thickness control in biotubes prepared using type-C mold. J Artif Organs.

Terazawa T, Nishimura T, Mitani T, Ichii O, Ikeda T, Kosenda K, Tatsumi E, Nakayama Y.

2018 Sep;21(3):387-391. doi: 10.1007/s10047-018-1035-4. Epub 2018 Mar 30. PMID: 29603026.

Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography. J Artif Organs.

Ishii D, Enmi J, Moriwaki T, Ishibashi-Ueda H, Kobayashi M, Iwana S, Iida H, Satow T, Takahashi JC, Kurisu K, Nakayama Y.

2016 Sep;19(3):262-9. doi:10.1007/s10047-016-0894-9. Epub 2016 Mar 22. Erratum in: J Artif Organs. 2017 Dec;20(4):403. doi: 10.1007/s10047-017-0980-7. PMID: 27003431.

Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs.

Furukoshi M, Moriwaki T, Nakayama Y.

2016 Mar;19(1):54-61. doi:10.1007/s10047-015-0859-4. Epub 2015 Aug 12. PMID: 26265146.

Mechanical properties of human autologous tubular connective tissues (human biotubes) obtained from patients undergoing peritoneal dialysis. J Biomed Mater Res B Appl Biomater.

Nakayama Y, Kaneko Y, Takewa Y, Okumura N.

2016 Oct;104(7):1431-7. doi: 10.1002/jbm.b.33495. Epub 2015 Jul 31. PMID: 26227350.

Preparation of Biotubes with vascular cells component by in vivo incubation using adipose-derived stromal cell-exuding multi-microporous molds. J Artif Organs.

Iwai R, Tsujinaka T, Nakayama Y.

2015 Dec;18(4):322-9. doi:10.1007/s10047-015-0848-7. Epub 2015 Jul 1. PMID: 26130007.

Acceleration of robust “biotube” vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold. J Biomed Mater Res B Appl Biomater.

Nakayama Y, Tsujinaka T.

2014 Feb;102(2):231-8. doi: 10.1002/jbm.b.32999. Epub 2013 Aug 2. PMID: 23908123.

Implantation study of small-caliber “biotube” vascular grafts in a rat model. J Artif Organs.

Yamanami M, Ishibashi-Ueda H, Yamamoto A, Iida H, Watanabe T, Kanda K, Yaku H, Nakayama Y.

2013 Mar;16(1):59-65. doi:10.1007/s10047-012-0676-y. Epub

2012 Nov 29. PMID: 23192398.

Water-soluble argatroban for antithrombogenic surface coating of tissue-engineered cardiovascular tissues. J Biomed Mater Res B Appl Biomater.

Nakayama Y, Yamaoka S, Yamanami M, Fujiwara M, Uechi M, Takamizawa K, Ishibashi-Ueda H, Nakamichi M, Uchida K, Watanabe T, Kanda K, Yaku H.

2011 Nov;99(2):420-30. doi: 10.1002/jbm.b.31914. Epub 2011 Sep 27. PMID: 21953850.

Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture. J Biomed Mater Res B Appl Biomater.

Watanabe T, Kanda K, Yamanami M, Ishibashi-Ueda H, Yaku H, Nakayama Y.

2011 Jul;98(1):120-6. doi: 10.1002/jbm.b.31841. Epub 2011 May 11. PMID: 21563308.

In-body optical stimulation formed connective tissue vascular grafts, “biotubes,” with many capillaries and elastic fibers. J Artif Organs.

Oie T, Yamanami M, Ishibashi-Ueda H, Kanda K, Yaku H, Nakayama Y.

2010 Dec;13(4):235-40. doi:10.1007/s10047-010-0517-9. Epub 2010 Sep 30. PMID: 20882309.

Autologous small-caliber “biotube” vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater.

Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y.

2010 Jan;92(1):236-42. doi: 10.1002/jbm.b.31510. PMID: 19921747.

In vitro maturation of “biotube” vascular grafts induced by a 2-day pulsatile flow loading. J Biomed Mater Res B Appl Biomater.

Huang H, Zhou YM, Ishibashi-Ueda H, Takamizawa K, Ando J, Kanda K, Yaku H, Nakayama Y.

2009 Oct;91(1):320-8. doi: 10.1002/jbm.b.31405. PMID: 19484781.

Faster and stronger vascular “Biotube” graft fabrication in vivo using a novel nicotine-containing mold. J Biomed Mater Res B Appl Biomater.

Sakai O, Kanda K, Takamizawa K, Sato T, Yaku H, Nakayama Y.

2009 Jul;90(1):412-20. doi:10.1002/jbm.b.31300. PMID: 19107803.

Development of the wing-attached rod for acceleration of “Biotube” vascular grafts fabrication in vivo. J Biomed Mater Res B Appl Biomater.

Sakai O, Kanda K, Ishibashi-Ueda H, Takamizawa K, Ametani A, Yaku H, Nakayama Y.

2007 Oct;83(1):240-7. doi: 10.1002/jbm.b.30789. PMID: 17410569.

Development of biotube vascular grafts incorporating cuffs for easy implantation. J Artif Organs. 2007;10(1):10-5. doi: 10.1007/s10047-006-0361-0. Epub

Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y.

2007 Mar 23. PMID: 17380291.

In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant.

Nakayama Y, Ishibashi-Ueda H, Takamizawa K.

2004;13(4):439-49. doi: 10.3727/000000004783983828. PMID: 15468686.